
​Matthew Lewis​
​SEAD/DEAD Simulation Project​

​Project Introduction:​
​In a world of FPV drone warfare, and the trending buzz about drone swarms and other​

​potential future technologies, this is my attempt at brainstorming a potential solution to real​
​mission goals, and more importantly, creating a simulated battlespace environment to test and​
​brainstorm different solutions in.​

​If the future is using economical, low production cost drone swarms, what is a practical​
​application in which we can test this potential technology? Rather than thinking that drones can​
​be a do-all solution, this is my attempt for planning, and simulating a drone swarm to fill a​
​particular role.​

​For this project, let us imagine a mass manufactured, low cost fixed wing unmanned​
​aerial vehicle. As a complete product, it has acceptable flight characteristics, comparable to what​
​we have seen from Shahed UAV(s), flight control systems complete, and a maximum carry​
​weight of 150kg.​

​The mission type I will try to approach is Suppression/Destruction of Enemy Air​
​Defenses(SEAD/DEAD). This is a fairly typical mission type for any air force trying to fulfill its​
​operational goals in any space, and a typical everyday need of an air force in conflict. The main​
​goal of these missions is to locate and destroy land-based radar sites and surface to air missile​
​sites, as well as other threats presented by the air defense systems of the adversarial force.​

​How can we most effectively use low-cost unmanned aerial vehicle(s) to fill this role?​

​This project will aim to create a simulation space where we can realistically test potential​
​solutions, and allow for better brainstorming and iteration.​

​Solution and Core Concept:​
​To find the most efficient solutions, this project hopes to create a complete battlefield​

​simulation system for SEAD/DEAD missions, and allow a user to iterate by trying out equipping​
​these universal UAVs with different systems, which both change capabilities, and take up the​
​limited weight of the system. There are universal constraints, such as the power of the motors,​
​the size of control surfaces, or carry weight, which can be edited universally depending on the​
​imagined drone design. There are also the modular systems which can be added to each drone or​
​drone type, and they add capabilities and effects to the simulated UAV. In order to find the most​
​efficient use, these systems can be given scripts or rules, and plugged into a neural network​
​system, which will train iterations, and then eventually, the neural network system can be tested​
​on different simulated battlespaces with different enemy behaviors or situations.​

​For my experiment, I started with a system where a swarm of single-role drones carried​
​out mission actions as an autonomous swarm. By assigning each drone a role, cost and important​
​components can be focused in a few important drones, and several drone frames could be used​
​only for carrying explosive payload, and effectively be used as sacrificial tools for various roles​
​they might be tasked for.​
​Roles:​
​Brain Drone:​



​This drone uses its weight to carry important computing and communication systems.​
​While a few of these might be present for redundancy, one brain drone assumes control of the​
​entire autonomous swarm at all times. It takes in information from all the drones, processes it,​
​broadcasts it back to a friendly operator, and makes autonomous decisions about drone swarm​
​movement and behavior, and transmits instructions back to the other drone in the swarm​
​Decoy Drone:​

​The decoy drone operates as a do it all drone for SEAD operations, and most importantly,​
​contains a Signature Augmentation Subsystem (SAS), enabling it to simulate the presence of​
​other aircraft. With several of these in a swarm, it could give the enemy the impression that​
​instead of a drone swarm, there is a flight of strike aircraft: potentially tricking the enemy into​
​turning on radar systems or attempting to engage the swarm from a SAM site, revealing their​
​location for a follow-up strike. This drone shares many responsibilities with the Acquisition​
​drone.​
​Acquisition Drone:​

​The acquisition drone focuses its payload on searching and finding sites of interest for​
​destruction. When the decoy drone entices the enemy force into any type of action, it is the​
​acquisition drone that has the computing power to locate potential sites, map their location, and​
​present that information as a package to the Brain Drone​
​Sacrificial Drone:​

​The sacrificial drone has its payload focused on destructive potential and target tracking.​
​After the brain drone decides which sacrificial drone is closest/best for a strike on a site, the​
​sacrificial drone goes to the target site and destroys the site. The sacrificial drone could also be​
​used in defensive operations, to intercept launched missiles or other threats, though the​
​effectiveness of this is not known.​

​By utilizing a large swarm with several types of drones, we can distribute responsibilities​
​and also end up with specialized drone units that give us the best capabilities per weight. A​
​centralized neural controller was chosen over fully decentralized swarm intelligence in order to​
​reduce training complexity, improve interpretability, and better reflect realistic​
​command-and-control constraints. This mirrors real-world systems where high-level decision​
​authority is centralized, while execution can be distributed across simpler autonomous agents.​

​Project Goals:​
​●​ ​Create a battlefield simulation​
​●​ ​Accurately simulate systems functions(radar,electronic transmissions)​
​●​ ​Accurately model enemy forces/sites​
​●​ ​Accurately simulate enemy behavior​
​●​ ​Create an enemy Command and Control AI​
​●​ ​Create enemy communications network​
​●​ ​Create scene randomizer​

​○​ ​Once model trained, allows for randomization to test with new scenes​
​●​ ​Create tag system to tag friendly elements with different capabilities​

​○​ ​Allow for iteration and testing​
​●​ ​Create friendly neural network system​

​○​ ​Allows user to plug in capabilities into the neural network, or mess with weights​

​Scope Clarification and Non-Goals​
​This project intentionally abstracts or omits certain real-world systems in order to​



​prioritize iteration speed, interpretability, and tactical decision-making analysis. The simulation​
​does not attempt to model full electromagnetic wave propagation, classified radar behavior, or​
​real missile flight dynamics. Instead, systems are represented through parameterized abstractions​
​that preserve causal relationships (detection, tracking, engagement, degradation) while remaining​
​computationally tractable and debuggable.​

​These constraints are intentional and allow the simulation to function as a design and reasoning​
​tool rather than a physics-perfect battlefield replica.​

​Project Elements Breakdown and Planning:​

​1. Create a Battlefield Simulation​

​The foundation of the entire project is a flexible battlefield simulation environment that can​
​represent realistic SEAD/DEAD scenarios while still being modular enough for iteration and​
​experimentation.​

​This will be implemented in Unity, leveraging its real-time 3D engine and physics system to​
​simulate air, ground, and electromagnetic interactions. The terrain will be generated using Unity​
​Terrain Tools, allowing for adjustable heightmaps, slopes, and elevation changes that directly​
​affect radar line-of-sight, missile engagement envelopes, and flight paths. Terrain layers (urban,​
​desert, forest) can be swapped to test different theaters of operation.​

​A skybox system will be added to represent different weather and lighting conditions (day/night,​
​haze, cloud cover), which can later influence sensor effectiveness. Universal physics will rely on​
​Unity’s built-in physics engine, with custom scripts layered on top to approximate fixed-wing​
​flight behavior, drag, lift, and turning radius constraints.​

​The goal here is not perfect aerodynamics, but a consistent, repeatable environment where​
​tactical decisions have visible consequences.​

​2. Accurately Simulate System Functions (Radar, Electronic Transmissions)​

​A key part of SEAD/DEAD is not just kinetic effects, but the invisible battlespace of sensors and​
​emissions.​

​Radar systems will be simulated using scripted detection cones and volumetric ranges, rather​
​than full ray-traced radar physics. Each radar site will have configurable parameters such as​
​range, sweep speed, frequency band, and detection thresholds. These will be visualized in debug​
​mode using Unity Gizmos, making it easy to see why a drone was or was not detected.​

​Electronic transmissions (communication links, radar emissions, decoy signals) will be​
​represented as abstracted signal objects with properties like power, signature type, and duration.​
​Decoy drones with a Signature Augmentation Subsystem (SAS) will intentionally broadcast​
​exaggerated radar signatures to emulate manned aircraft or strike packages.​



​This abstraction allows rapid iteration while still preservin​​g the cause-and-effect relationships​
​central to electronic warfare decision-making.​

​3. Accurately Model Enemy Forces and Sites​

​Enemy air defense sites (radars, SAM batteries, command posts) will be modeled as modular​
​prefabs rather than static scenery.​

​Each site will consist of:​

​●​ ​A physical structure (radar dish, launcher, control building)​
​●​ ​A sensor component​
​●​ ​A communication component​
​●​ ​A behavior controller​

​Using prefab-based design allows the same core logic to be reused across different threat levels.​
​For example, an early-warning radar may prioritize long-range detection, while a SAM site​
​focuses on fire-control tracking.​

​Damage modeling will be simplified but functional: destroying a radar dish disables detection,​
​while destroying a control node disables coordination. This supports meaningful partial kills​
​rather than all-or-nothing outcomes.​

​4. Accurately Simulate Enemy Behavior​

​Enemy behavior will be handled through a finite state machine (FSM) or behavior tree system,​
​implemented through custom scripts.​

​Enemy units will transition between states such as:​

​●​ ​Passive monitoring​
​●​ ​Heightened alert​
​●​ ​Active engagement​
​●​ ​Emission control (radar off)​
​●​ ​Post-attack recovery​

​This allows the simulation to reflect real-world tradeoffs, such as turning on radar to engage a​
​threat while simultaneously exposing the site to detection. These behaviors will be​
​parameter-driven so different doctrines can be tested without rewriting logic.​

​This is critical for preventing “scripted” or predictable enemies and instead creating adversaries​
​that react to player and AI-driven actions.​

​5. Create an Enemy Command and Control (C2) AI​

​Rather than each site acting independently, an enemy C2 AI will oversee the entire air defense​
​network.​



​This system will aggregate sensor data from multiple sites, decide when to activate or deactivate​
​radars, assign engagement priorities, and coordinate responses. Implementation-wise, this will​
​exist as a centralized manager object that receives updates from individual sites and broadcasts​
​decisions back down the chain.​

​This mirrors real integrated air defense systems (IADS) and enables emergent behaviors, such as​
​sacrificing one radar site to preserve higher-value assets elsewhere.​

​6. Create an Enemy Communications Network​

​Enemy communications will be modeled as a network graph rather than point-to-point links.​

​Each site will have communication dependencies; destroying or jamming relay nodes will​
​degrade the network’s effectiveness. This introduces realistic vulnerabilities and allows SEAD​
​tactics beyond simple destruction, such as isolation or confusion.​

​Latency, reliability, and redundancy can be abstracted as numerical modifiers rather than​
​real-time packet simulation, keeping performance reasonable while preserving strategic depth.​

​7. Create a Scene Randomizer​

​To prevent overfitting both human and AI strategies, a scene randomizer will be implemented.​

​This system will procedurally place enemy sites, terrain features, and environmental conditions​
​within defined constraints. Randomization seeds can be saved, allowing exact scenarios to be​
​replayed for debugging or comparison.​

​Once neural networks are trained, this system becomes essential for stress-testing performance​
​against unfamiliar layouts rather than memorized maps.​

​8. Create a Tag and Capability System for Friendly Units​

​Each friendly drone will use a tag-based system to define its role and capabilities.​

​Tags such as​​Sensor​​,​​Decoy​​,​​Explosive​​,​​Relay​​, or​​Brain​​allow behavior scripts and AI logic to​
​dynamically adapt based on what assets are available. This makes swarm composition flexible​
​and enables rapid experimentation without rewriting logic for each new drone type.​

​This also allows degraded operation — if a brain drone is destroyed, another tagged unit can​
​assume partial control.​

​9. Allow for Iteration and Testing​

​A core design goal is fast iteration.​

​Inspector-exposed variables, debug overlays, and runtime toggles will allow parameters like​
​sensor range, payload weight, or communication strength to be adjusted without recompiling​



​code. This supports rapid experimentation and makes the simulation useful as a thinking tool, not​
​just a demo.​

​Data from each run can be logged for comparison across iterations.​

​10. Create a Friendly Neural Network System​

​The friendly swarm AI will eventually transition from scripted logic to a neural network-based​
​decision system.​

​Initial implementations may use Unity-compatible ML frameworks (such as ML-Agents) to train​
​behaviors like formation movement, decoy timing, and strike selection. Inputs will include​
​sensor data, enemy emissions, and swarm status, while outputs will control movement vectors​
​and role-specific actions.​

​Crucially, the system will allow manual tweaking of weights and capabilities, enabling hybrid​
​control between human intuition and learned behavior.​

​Implementation​

​Tech Stack​

​In Unity​

​●​ ​U​​nity ML-Agents (main training framework)​

​○​ ​Gives us Agents, Observations, Actions, reward hooks, training integration​

​●​ ​Unity Physics + custom flight controller scripts​
​○​ ​The “motor” the policy drives (don’t train raw aerodynamics from scratch, train​

​decisions)​

​●​ ​Gizmos + Debug overlays​
​○​ ​Visualize detections, engagement zones, reward events, and agent decisions​

​●​ ​ScriptableObjects​
​○​ ​Store scenario configs + swarm loadouts + randomized parameters cleanly​

​Outside Unity (training side)​

​●​ ​Python (ML-Agents trainers)​
​○​ ​Training loop, hyperparameters, logging​

​●​ ​PyTorch (under the hood with ML-Agents)​
​●​ ​TensorBoard (training curves + debugging reward shaping)​
​●​ ​Export to ONNX (model format)​
​●​ ​Unity Barracuda (runtime inference in Unity using the trained ONNX model)​



​Neural Network Planning​

​NN Control​

​●​ ​One “Brain Drone” agent controls the swarm at the tactical level​
​●​ ​Other drones run:​

​○​ ​either simple autopilot “follow this waypoint / formation slot”​
​○​ ​or small role scripts that obey high-level commands​

​NN Action Space​

​High-level movement actions​

​●​ ​swarm_heading​​(continuous: -1 to 1 → maps to yaw change)​
​●​ ​swarm_speed​​(continuous: normalize between min/max​​cruise)​
​●​ ​altitude_bias​​(continuous: go lower/higher to break​​LoS)​

​Role-specific command actions​

​●​ ​decoy_emit_mode​​(discrete: Off / Low / High “aircraft​​emulate”)​
​●​ ​target_select​​(discrete: choose which known emitter​​/ site is highest priority)​
​●​ ​strike_commit​​(discrete: yes/no)​
​●​ ​which_sacrificial_drone​​(discrete: select from available​​drones)​

​Optional​

​●​ ​Swarm formation​
​●​ ​“split swarm” action: keep together vs divide into 2 groups​
​●​ ​“jamming posture”: conserve vs aggressive​

​NN observation space​

​Fixed-size structured vector​

​Swarm state (friendly side)​

​●​ ​number of drones alive by role (brain/decoy/acquisition/sacrificial)​
​●​ ​average swarm position, velocity, heading​
​●​ ​fuel/energy proxy (optional)​
​●​ ​comms quality metric (if you simulate it)​

​Threat/environment state​

​●​ ​list of detected emitters (top N)​
​○​ ​for each: relative bearing, distance, last-seen time, type (radar / SAM / unknown)​

​●​ ​“threat heat” features​



​○​ ​nearest engagement zone distance​
​○​ ​whether currently tracked/locked​

​●​ ​terrain LoS proxy​
​○​ ​“is line-of-sight to nearest radar broken” (boolean-ish numeric)​

​Decoy effectiveness feedback​

​●​ ​last X seconds: did turning on SAS cause radar activation / tracking?​
​●​ ​how many enemy sensors turned on after decoy emit?​

​NN Rewards​

​Primary mission rewards​

​○​ ​big reward for destroying radar/SAM sites (objective success)​
​○​ ​medium reward for correctly localizing an emitter (acquisition success)​
​○​ ​reward for causing enemy radar to activate (decoy success), but only if it leads to​

​detection/localization​

​Penalty shaping​

​○​ ​penalty per friendly drone lost (avoid suicide swarm)​
​○​ ​penalty for being tracked/locked​
​○​ ​penalty for wasting decoy emit time (optional)​
​○​ ​penalty for time (encourage efficiency)​

​Anti-cheese rules​

​●​ ​If decoy just spams emit forever: add penalty for excessive emission time unless it​
​produces useful results​

​●​ ​If agent hovers at edge of range: include time penalty + reward only on actual progress​
​toward mission completion​

​Degraded Operation and Safety Fallbacks​

​●​ ​If brain drone is destroyed:​
​○​ ​secondary brain drone assumes control​
​○​ ​otherwise revert to scripted swarm behavior​

​●​ ​If comms quality drops below threshold:​
​○​ ​restrict NN action space (no split-swarm, no deep penetration)​

​●​ ​If NN outputs invalid actions:​
​○​ ​clamp actions​
​○​ ​revert to last known safe command​

​●​ ​Optional: confidence threshold on NN output before executing irreversible actions (e.g.,​
​strike commit)​

​Performance Evaluation Metrics​



​●​ ​Mission success rate (% of runs with primary objectives achieved)​
​●​ ​Average time to radar localization​
​●​ ​Friendly drone loss ratio​
​●​ ​Cost-effectiveness proxy (objectives achieved per drone lost)​
​●​ ​Generalization score (performance drop between seen vs randomized scenarios)​

​Training Strategy​

​Use TensorBoard to observe training​

​Phase A: Navigation + survival​

​●​ ​enemy radars exist but do not fire​
​●​ ​objective: reach waypoint zones while minimizing detection​

​Phase B: Decoy / provoke behavior​

​●​ ​enemy reacts (radar on/off) based on decoy emission​
​●​ ​objective: cause radar activation AND keep swarm alive​

​Phase C: Full SEAD loop​

​●​ ​add acquisition + emitter localization​
​●​ ​add sacrificial strikes​
​●​ ​objective: destroy site(s) efficiently with acceptable losses​

​Phase D: Robustness training​

​●​ ​domain randomization:​
​○​ ​site placements​
​○​ ​radar ranges​
​○​ ​comms degradation​
​○​ ​terrain types​




